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Abstract. In this paper, we relate the set of asymptotic critical values of a polynomial

function f with the set of discontinuity of two functions, the multivalued function which

associate to each value t the set of tangent directions at infinity of the fiber f�1ptq and the

composition of the pn�2q-dimensional volume function with the first one. This gives neces-

sary conditions of equisingularity at infinity for the family of the fibers of a real polynomial

function.

1. Introduction

Let f : Kn Ñ K be a polynomial function where K � C or K � R. It is well-known that

f is a local C8-trivial fibration outside a finite subset of K [37], the smallest such set is called

the bifurcation set of f , denoted by Bpfq. In general the set Bpfq is larger than the set K0pfq

of critical values of f since it contains also the set B8pfq of bifurcation values at infinity of f .

Roughly speaking, the set B8pfq consists of points at which f is not a locally trivial bundle

at infinity (i.e., outside a large ball). For n � 2, the set B8pfq can be effectively computed in

the complex case [4, 14] as well as it has been described explicitly in the real case [6, 25, 38].

So far, the characterization of bifurcation values at infinity of polynomials in several variables

(n ¡ 2) is still an open challenging problem. Up to now, most of the studies carried out in this

direction require extra conditions. In the complex case, the result of [14] was generalized by

Parusiński under the assumption of isolated singularities at infinity [30], then by Siersma and

Tibăr for complex polynomials with isolated W -singularities at infinity [33] and by [15] for

polynomial mappings of one dimensional fibers. In the real case, some sufficient condition for

the existence of vanishing components at infinity for polynomial functions are given in [8, 10].

Moreover, when the fibers of a polynomial mapping are real curves, bifurcation values of f

can also be characterized [23].

In general, it is not easy to check if a value is a bifurcation value at infinity or not.

People usually consider a larger but finite set which contains B8pfq [16, 27, 31], the set
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K8pfq of asymptotic critical values of f , to control B8pfq. The set of asymptotic critical

values of f is defined as follows

K8pfq :�

#
y P K : there exists a sequence xk P Kn such that

}xk} Ñ �8, fpxkq Ñ y and }xk}}∇fpxkq} Ñ 0

+
.

It is the set of points where Malgrange’s condition fails to hold. Generally, checking if a

value is an asymptotic critical value is easier than checking if it is a bifurcation value at

infinity since the set of generalized critical values Kpfq � K0pfq YK8pfq can be effectively

computed [9, 18, 19, 20, 21, 22].

Now let f be a real polynomial function in n variables. We gives some necessary

conditions of equisingularity at infinity for the family of the fibers of f by studying the

variation of the set of tangent directions D8ptq at infinity of the fibers of f (Definition 3.1).

In fact, we will consider the two following functions t ÞÑ D8ptq and t ÞÑ voln�2pD8ptqq. The

first function is the multivalued function which associates to each value t P R the set of

tangent directions D8ptq at infinity of the fiber f�1ptq and the second one is the composition

of the pn�2q-dimensional volume function with the first one. It turns out that these functions

are locally Lipschitz outside K8pfq and bad behaviors only occur when t is an asymptotic

critical value. Precisely, the main results of the paper are the following.

Theorem 4.1. Assume that t0 R K8pfq, where f : Rn Ñ R is a polynomial function with

n ¥ 2. Then there exist some constants c ¡ 0 and δ ¡ 0 such that for all t1, t2 P pt0�δ, t0�δq,

we have

distgHpD8pt1q, D8pt2qq ¤ c|t1 � t2|,

where distgHp., .q denotes the Hausdorff distance with respect to the intrinsic metric in Da
8

and Da
8 is the set of algebraic tangent directions at infinity of f defined by (1).

Theorem 4.2. Let f : Rn Ñ R be a polynomial function with n ¥ 2. Then the volume

function t ÞÑ voln�2pD8ptqq is locally Lipschitz on RzK8pfq.

Although our results are inspired more or less by the results given in [11, 12, 13], which

study the variation of the total curvature and the total absolute curvature of the fibers of real

polynomial or definable functions, our approach is somehow different. As the total curvature

of the fibers is related to their topology by the Gauss-Bonnet-Chern Theorem, it seems that

the set of tangent directions at infinity of the fibers and their pn�2q-dimensional volume are

more related to the geometry at infinity of the fibers. Therefore, this gives a different point

of view for the problem of studying singularities at infinity of real polynomial functions.
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The paper is structured as follows. In Section 2, we will recall some known results of

Semi-Algebraic Geometry. The notions of geometric and algebraic tangent cones at infinity,

their corresponding sets of tangent directions at infinity and some basic properties of these

sets are given in Section 3. Section 4 contains the results on Lipschitz continuity of the sets

of tangent directions at infinity and their volume.

2. semi-algebraic geometry

2.1. Notation. Let us start with some notation which will be used consistently throughout

the paper. Let Bnr pxq and Sn�1
r pxq denote, respectively, the open ball and the sphere of radius

r centered at x in Rn. For simplicity, we write Bnr and Sn�1
r if x � 0; and write Bn and Sn�1

if x � 0 and r � 1.

Let X be a subset of Rn. The closure and the boundary of X � Rn is denoted by X

and BX respectively. Designate by singpXq the set of singular points of X, which is the set

of points where X is not a C1-manifold.

We denote by distp�, �q the Euclidean distance on Rn and set

NrpXq :� tx P Rn : distpx,Xq ¤ ru,

the closed neighborhood of radius r of X in Rn.

Let distXp�, �q be the intrinsic metric in X. The Hausdorff distance on Rn and the

Hausdorff distance with respect to the intrinsic metric in X are denoted respectively by

distHp�, �q and distgHp�, �q.

2.2. Definition and basic properties. In this part, we recall some notions and basic

results of Semi-Algebraic Geometry, which can be found in [1, 2, 3, 39].

Definition 2.1. (i) A set X � Rn is said to be semi-algebraic if it can be represented in a

form X �
�p
i�1Xi, with Xi �

�ji
j�1Xij, where each Xij has one of the following forms

tx P Rn : fijpxq � 0u, tx P Rn : fijpxq ¡ 0u

and each fij is a polynomial (of degree dij). Clearly a representation of X in the above

form is not unique.

(ii) The set of data: �
n, p, j1, . . . , jp, pdijq i�1,...,p

j�1,...,ji



is called the diagram DpXq of (the representation of) X.
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(iii) Let X � Rn and Y � Rp be semi-algebraic sets. A mapping f : X Ñ Y is said to be

semi-algebraic if its graph

tpx, yq P X � Y : y � fpxqu

is a semi-algebraic subset of Rn � Rp.

An important fact of Semi-Algebraic Geometry is Tarski–Seidenberg Theorem [1, 2, 3,

32, 35, 36, 39].

Theorem 2.1 (Tarski–Seidenberg Theorem - first form). Let X � Rn be a semi-algebraic

set. Then the image of X by a semi-algebraic mapping is semi-algebraic. Moreover, its

diagram depends only on the diagram of X.

An equivalent version of Tarski–Seidenberg Theorem, that we give below, asserts that

semi-algebraic sets can be expressed using formulas containing quantifiers. Let us first specify

the notion of first-order formula:

1. If P P Rnrx1, . . . , xns, then P � 0 and P ¡ 0 are first-order formulas.

2. If Φ and Ψ are first-order formulas, then “Φ_Ψ”, “Φ^Ψ”, “ Φ” are first-order formulas.

3. If Φ is a first-order formula and x is a variable ranging over R, then DxΦ and @xΦ are

first-order formulas.

The formulas obtained by using only rules 1 and 2 are called quantifier-free formulas.

By definition, a subset A � Rn is semi-algebraic if and only if there is a quantifier-free

formula Φpx1, . . . , xnq such that

px1, . . . , xnq P AØ Φpx1, . . . , xnq.

Theorem 2.2 (Tarski–Seidenberg Theorem - second form). For any first-order formula

Φpx1, . . . , xnq, the set of px1, . . . , xnq P Rn which satisfies Φpx1, . . . , xnq is semi-algebraic. In

other words, every first-order formula is equivalent to a quantifier-free formula.

We list below some basic properties of semi-algebraic sets and mappings:

(i) The class of semi-algebraic sets is closed with respect to Boolean operators; a Cartesian

product of semi-algebraic sets is a semi-algebraic set.

(ii) The closure, the interior, the boundary and each connected components of a semi-

algebraic set X � Rn are semi-algebraic sets. Furthermore, the diagram of these sets

depends only on the diagram of X.

(iii) The set of singular points of a semi-algebraic set X � Rn is semi-algebraic.

(iv) A composition of semi-algebraic mappings is a semi-algebraic mapping.
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(v) If X and Y � H are semi-algebraic sets, then the distance function

distp�, Y q : X Ñ R, x ÞÑ distpx, Y q :� inft}x� a} : a P Y u,

is continuous semi-algebraic.

The following Curve Selection Lemma will be useful later [28, 29].

Lemma 2.1. Let X � Rn be a semi-algebraic set. Assume that there exists a sequence xk P X

such that lim
kÑ8

xk � x P XzX. Then there exists a C1 semi-algebraic curve ϕ : p0, εq Ñ Xztxu

such that lim
tÑ0

ϕptq � x.

Now we recall Hardt’s semi-algebraic local trivialization theorem.

Theorem 2.3. Let X and Y be respectively semi-algebraic sets in Rn and Rm, f : X Ñ Y

a continuous semi-algebraic mapping. Then there exists a partition of Y into finitely many

semi-algebraic subsets Yi, i � 1, . . . p, such that f is semi-algebraically trivial over each Yi,

i.e., f�1pYiq is semi-algebraically homeomorphic to f�1pyiq � Yi for each i and any yi P Yi.

2.3. Stratification and Whitney property of semi-algebraic sets. Let X � Rn be a

semi-algebraic set.

A semi-algebraic stratification of X is a partition of X into a locally finite family S of

connected semi-algebraic C1-submanifolds of Rn such that the following frontier condition

is satisfied: if Y X pZzZq � H for Y, Z P S, then Y � pZzZq and dimY   dimZ.

According to [1, Proposition 2.5.1], every semi-algebraic set admits a semi-algebraic

stratification. Moreover, the number of strata and their diagrams depending only on the

diagram of X in view of [39, Proposition 4.4].

Let X � Rn be a semi-algebraic set and let S :� tXαuαPI be a semi-algebraic stratifi-

cation of X. The dimension of X is defined by

dimX :� maxtdimXα : α P Iu.

It is not hard to verify that this definition of dimension does not depend on the stratification

of X. For convenience, set dimH � �1. Let x P X, the dimension of X at x is defined by

dimxX :� maxtdimXα : α P I, x P Xαu.

Obviously dimxX � dimTxX if x is a non singular point of X, where TxX denotes the

tangent space of X at x.

We say that X has the Whitney property if for any a P X, there exists a neighborhood

U of a and two constants M ¡ 0 and α ¡ 0 such that any points x and y in X X U can be

joined in X X U by a piecewise smooth curve of length ¤ M}x � y}α. In view of [34], if, in
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addition, X is closed, then X has the Whitney property. Although the constants M and α

depend on U , if X is connected and compact, we can choose U � X for any a P X, which

means M and α depend only on X (cf. [26]). In this case we say that X has the Whitney

property with constant M and exponent α. On the other hand, in light of [24, 26], for any

constant M ¡ 1, there exists a semi-algebraic stratification S of X such that each stratum

Y P S has the Whitney property with constant M and exponent 1. In the following result,

which is crucial in the proof of Theorem 4.1, we strengthen this statement by claiming that

it still holds on the closure of each stratum Y P S.

Proposition 2.1. Let M ¡ 1 and let X � Rn be a semi-algebraic set, then there exists

a semi-algebraic stratification S of X such that for each stratum Y P S, any two points

x, y P Y can be joined in Y by a piecewise smooth arc of length ¤ M}x � y}. In particular

distgpx, yq ¤M}x� y}.

Proof. Let S be a semi-algebraic stratification of X such that each stratum in S has the

Whitney property with constant
M � 1

2
and exponent 1 in view of [24, 26]. Let Y P S and

pick two points x, y P Y arbitrarily. Clearly, we may suppose that x � y. In view of [34],

there exists a neighborhood U (resp., V ) of x (resp., y) and some positive constants α1,M1

(resp., α2,M2) such that Y XU (resp., Y X V ) has the Whitney property with constant M1

(resp., M2) and exponent α1 (resp., α2). Let

�M :� max

"
M1,M2,

M � 1

2

*
and α :� mintα1, α2, 1u ¡ 0.

Observe that we can pick two points x1 P Y X U and y1 P Y X V arbitrarily close to x and y

respectively so that

maxt}x� x1}, }y � y1}u ¤ 1 and maxt}x� x1}α, }y � y1}αu ¤
M � 1

8�M }x� y}.

Then x and x1 can be joined in Y X U by a piecewise smooth curve of length bounded by

M1}x� x
1}α1 ¤ �M}x� x1}α ¤ M � 1

8
}x� y}.

Similarly y and y1 can be also joined in Y XV by a piecewise smooth curve of length bounded

by
M � 1

8
}x�y}. Moreover, by the construction, x1 and y1 can be joined in Y by a piecewise

smooth curve of length bounded by
M � 1

2
}x1 � y1}. Summarily, x and y can be joined in Y
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by a piecewise smooth curve of length bounded by

M � 1

4
}x� y} �

M � 1

2
}x1 � y1}

¤
M � 1

4
}x� y} �

M � 1

2
p}x� y} � }x� x1} � }y � y1}q

¤
M � 1

4
}x� y} �

M � 1

2
}x� y} � �M p}x� x1}α � }y � y1}αq

¤
M � 1

4
}x� y} �

M � 1

2
}x� y} �

M � 1

4
}x� y} �M}x� y}.

The proposition is proved. �

Note that Proposition 2.1 can be stated for a more general context of subanalytic sets

like those given in [24, 26, 34] but we only consider the semi-algebraic case which is totally

enough for our purposes.

2.4. Some variational properties of semi-algebraic sets. In this subsection, we recall

briefly some notions and results on variations of semi-algebraic sets which will be used

afterwards. The contents presented in this part can be found in [39] and the references

therein.

Definition 2.2. Let X � Rn be a bounded set. For any ε ¡ 0, denote by Mpε,Xq the

minimal number of closed balls of radius ε that cover X. The real number log2Mpε,Xq is

called the ε-entropy of X.

Denote by Gk
n and Ḡk

n the space of all the k-dimensional linear subspaces and the space

of all the k-dimensional affine subspaces in Rn respectively. Each element P̄ in Ḡn�k
n can

be represented by a pair px, P q P Rn � Gn�k
n where x P P and P̄ � P̄x is the k-dimensional

affine subspace of Rn, orthogonal to P at x. Let dP̄ be the measure on Ḡn�k
n given by

dP̄ � dxb dP where dx is the Lebesgue measure on P (identify P with Rn�k) and dP is the

measure on Gk
n induced by the Haar measure on the orthogonal group OnpRq of Rn.

Definition 2.3. Let X be a bounded subset of Rn. Define V0pXq as the number of connected

components of X. For i � 1, . . . , n, the i-th variation of X, denoted by VipXq, is defined as

follows:

VipXq � cpn, iq

»
P̄PḠn�in

V0pX X P̄ qdP̄ ,

where the coefficient cpn, iq is chosen in such a way that Vipr0, 1s
iq � 1.
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Proposition 2.2 (see [39, Proposition 5.8]). Let X � Bn1 � Rn be a semi-algebraic set of

dimension l, Y � Rn and 0   η   1 such that Y � NηpXq. Assume that X has the diagram

DpXq �

�
n, p, j1, . . . , jp, pdijq i�1,...,p

j�1,...,ji



.

Then we have

Mpη, Y q ¤

�
4

η


l

Cpnqνplqαpnq,

where Cpnq is a positive constant depending only on n,

νplq �
ļ

i�0

cpn, iqvolipBi1q and αpnq �
1

2

p̧

i�1

pdi � 2qpdi � 1qn�1

with di �
ji̧

j�1

dij.

Proposition 2.3 (see [39, Theorem 5.14]). Let X be a bounded semi-algebraic set of dimen-

sion l. Then for any ε ¡ 0, we have

c1

ļ

i�0

VipXq

�
1

ε


i

¤Mpε,Xq ¤ c2

ļ

i�0

VipXq

�
1

ε


i

,

where c1 and c2 are positive constants depending only on the diagram DpXq of X.

2.5. Semi-algebraic multivalued functions. As we will consider the tangent cones at

infinity and the sets of tangent directions at infinity of the fibers of semi-algebraic functions

afterwards, when the value of the functions varies, so do the tangent cones at infinity and

the sets of tangent directions at infinity, this means that we need to deal with semi-algebraic

multivalued functions. Like semi-algebraic single-valued mappings, the definition of a semi-

algebraic multivalued function is based on the semi-algebraic property of its graph.

Definition 2.4. Let X � Rn and Y � Rp be semi-algebraic sets. A multivalued function

F : X Ñ Y is said to be semi-algebraic if its graph

tpx, yq P X � Y : y P Fpxqu

is a semi-algebraic subset of Rn � Rp.

Let us next define the locally Lipschitz continuity of a multivalued function.

Definition 2.5. Let F : X Ñ Y be a multivalued function where X � Rn and Y � Rp. We

say that F is locally Lipschitz at x P X if there exist some constants c ¡ 0 and δ ¡ 0 such

that for all t1, t2 P Bnδ pxq, we have

Fpt1q � Fpt2q � c|t1 � t2|Bp.
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3. Tangent directions at infinity

Let f : Rn Ñ R be a polynomial function of degree d ¥ 1 with n ¥ 2. We can write

fpxq � fdpxq � fd�1pxq � � � � ,

where fi is the homogeneous part of degree i of f.

Put

Da
8 :�

 
u P Sn�1 : fdpuq � 0

(
(1)

and call it the set of algebraic tangent directions at infinity of fibers of f. The following

notion plays a crucial role in this paper.

Definition 3.1. For each t P R, the set of geometric tangent directions at infinity of the

fiber f�1ptq is defined by

D8ptq :�

"
u P Sn�1 : there is a sequence xk P f�1ptq such that xk Ñ 8 and

xk

}xk}
Ñ u

*
.

Some simple properties of tangent directions at infinity are given below.

Lemma 3.1. (i) Da
8 is an algebraic set of dimension at most n� 2.

(ii) For all t P R, D8ptq is a semi-algebraic subset of Da
8 and it holds that

dimD8ptq ¤ dim f�1ptq � 1 ¤ n� 2.

(iii) There is a representation of D8ptq such that the diagram of D8ptq depends only on the

dimension n and the degree of f.

(iv) For each t P R, let

Xt :� tx P D8ptqzpt∇fd � 0u Y singpD8ptqqq : dimxD8ptq � n� 2u.

Then Xt is semi-algebraic. Furthermore, there exists a representation of Xt such that

the diagram of Xt depends only on the dimension n and the degree of f.

Proof. (i): This is clear.

(ii) and (iii): Take any u P D8ptq. By definition, there is a sequence xk P f�1ptq such that

xk Ñ 8 and
xk

}xk}
Ñ u. Observe that

fd

�
xk

}xk}



�
fdpx

kq

}xk}d
�
fpxkq �

°d�1
i�0 fipx

kq

}xk}d
�

t

}xk}d
�

d�1̧

i�0

1

}xk}d�i
fi

�
xk

}xk}



.

Letting k Ñ 8, we get fdpuq � 0, and so u P Da
8. Therefore D8ptq � Da

8.

For each t P R, define

Aptq :� tpλx, λq P Rn � p0,�8q : fpxq � tu. (2)
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Clearly, Aptq is a semi-algebraic set, which is homeomorphic to f�1ptq � p0,�8q. Hence

dimAptq � dim f�1ptq � 1.

Note that

Aptq X pRn � t0uq � AptqzAptq.

By [17, Proposition 1.4], therefore

dimAptq X pRn � t0uq ¤ dim
�
AptqzAptq

�
  dimAptq � dim f�1ptq � 1.

On the other hand, it is clear that Aptq X pRn � t0uq is the cone with the apex at the origin

and the base being D8ptq � t0u. Therefore, dimD8ptq ¤ f�1ptq � 1.

Finally, observe that the diagram of Aptq depends only on the dimension n and the

degree of f, so does Aptq X pRn � t0uq. Consequently, the diagram of D8ptq depends also

only on the dimension n and the degree of f.

(iv) The first statement is clear so let us prove the second one. First of all, we show

that

Xt � D8ptqzpt∇fd � 0u YDa
8zD8ptqq. (3)

Pick arbitrarily u P D8ptqzpt∇fd � 0u Y Da
8zD8ptqq. Then there is r ¡ 0 such that

Bnr puq XDa
8zD8ptq � H, i.e.,

Bnr puq XDa
8 � Bnr puq XD8ptq. (4)

As u R t∇fd � 0u, it is not a singular point of Da
8 and dimu Da

8 � n�2. By combining these

with (4), it follows that u R singpD8ptqq and dimuD8ptq � n� 2. Consequently, u P Xt and

so

Xt � D8ptqzpt∇fd � 0u YDa
8zD8ptqq.

Now for any u P Xt, we will show that u R Da
8zD8ptqq, which implies

Xt � D8ptqzpt∇fd � 0u YDa
8zD8ptqq,

and so yields (3). Assume for contradiction that u P Da
8zD8ptqq. Then by Lemma 2.1, there

is a C1 semi-algebraic curve

ϕ : p0, εq Ñ Da
8zD8ptq

such that lim
tÑ0

ϕptq � u. On the other hand, since u R singpD8ptqq, for any sufficiently small

neighborhood U of u, the restriction π|UXD8ptq is one-to-one, where

π : Rn Ñ tuu � TuD8ptq
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is the orthogonal projection on the tangent plane tuu�TuD8ptq. It is clear that π|UXDa
8

is not

one-to-one. Hence u P singpDa
8q, i.e., ∇fdpuq � 0, which is a contradiction. Consequently (3)

follows. Observe that rπpAptq X pSn�1 � t0uqq � D8ptq,

where rπ : Rn�1 Ñ Rn is the projection on the first n coordinates and Aptq is given by (2).

Hence, in view of (3), we have

Xt � rπpAptq X pSn�1 � t0uqqzpt∇fd � 0u YDa
8zrπpAptq X pSn�1 � t0uqqq.

As the diagrams of Aptq, t∇fd � 0u and Da
8 depend only on the dimension n and the degree

of f, so does the diagram of Xt. Thus item (iv) follows. �

We next provide some examples and remarks concerning tangent directions at infinity.

Example 3.1. Consider the polynomial function

f : R3 Ñ R, px, y, zq ÞÑ fpx, y, zq � z � x2 � y2.

Some simple computations show that K8pfq � H, Da
8 � tp0, 0,�1qu, and that

D8ptq � tp0, 0, 1qu for all t P R;

in particular, dimD8ptq � 0   2 � dim f�1ptq.

The following example shows that in general, we can not expect that the multivalued

function

D8 : RÑ Sn�1, t ÞÑ D8ptq,

is constant over each connected component of RzK8pfq.

Example 3.2. Consider the following polynomial (see [31] and [27, Example 2.1])

fpx, y, zq � x� x2y � x4yz.

We have K8pfq � t0u and Da
8 � tpx, y, zq P S2 : xyz � 0u. Let us prove that the multivalued

function

t ÞÑ Ht :� D8ptq X tx � 0u � D8ptq X tp0, y, zq : y2 � z2 � 1u

is not constant on the intervals p�8, 0q and p0,�8q. To do this, for any sequence pxk, yk, zkq P

f�1ptq tending to infinity, we need to investigate the cluster points of the sequence
pxk, yk, zkq

}pxk, yk, zkq}
belonging to tp0, y, zq : y2 � z2 � 1u. Without loss of generality, assume that the sequence
pxk, yk, zkq

}pxk, yk, zkq}
converges to a limit v � p0, y, zq P tp0, y, zq : y2 � z2 � 1u.
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Let pxk, yk, zkq �

�
t,�k,�

1

t2



P f�1ptq, then

pxk, yk, zkq

}pxk, yk, zkq}
Ñ p0,�1, 0q P Ht.

Furthermore, if pxk, yk, zkq � pt, 0,�kq P f
�1ptq, then

pxk, yk, zkq

}pxk, yk, zkq}
Ñ p0, 0,�1q P Ht.

Now assume that yk � zk as k Ñ �8. So set zk � λkyk. Consider the equation

λkx
4
ky

2
k � x

2
kyk � xk � t � 0 (5)

with yk as variable. Observe that yk, zk Ñ 8, y, z � 0 and λk Ñ
z

y
� 0. These, together

with (5) and the fact that
pxk, yk, zkq

}pxk, yk, zkq}
Ñ v � p0, y, zq, imply that xk Ñ 0.

The discriminant of (5) is

∆k � x4
k � 4λx4

kpxk � tq � x4
kp1� 4λkt� 4λkxkq.

So (5) has real roots if and only if 1� 4λkpt� xkq ¥ 0. Letting k Ñ �8, we have

1� 4
z

y
t ¥ 0. (6)

Consider two cases:

Case t ¡ 0. The condition (6) becomes
z

y
¥ �

1

4t
. Set A :�

p0,�1, 1
4t
qb

1� 1
16t2

. Then, on the unit

circle centered at the origin in the plane Oyz, Ht is the union of two anticlockwise arcs (see

Figure 1) hkkkkkkkkkkkkkkj
A, p0, 0,�1q and

hkkkkkkkkkkkkkkj
�A, p0, 0, 1q .

Case t   0. The condition (6) becomes
z

y
¤ �

1

4t
. Set B :�

p0, 1, 1
4t
qb

1� 1
16t2

. Hence, on the unit

circle centered at the origin in the plane Oyz, Ht is the union of two anticlockwise arcs (see

Figure 2) hkkkkkkkkkkkkkkj
p0, 0,�1q, B and

hkkkkkkkkkkkkkkj
p0, 0, 1q,�B .

12



Figure 1: t ¡ 0.

Ox y

z

A

�A

z � �
y

4t

p0, 0,�1q

p0, 0, 1q

Figure 2: t   0.

Ox

y

z

B

�B

z � �
y

4t

p0, 0,�1q

p0, 0, 1q

On Rzt0u, it is clear that the mapping t ÞÑ Ht is not constant whence neither is the

mapping t ÞÑ D8ptq.

The following example shows that, in general, the multivalued function

D8 : RÑ Sn�1, t ÞÑ D8ptq,

is not locally Lipschitz continuous.

Example 3.3. Consider the polynomial function (see [10])

f : R3 Ñ R, px, y, zq ÞÑ fpx, y, zq � zpx2 � pxy � 1q2q.

Some simple computations show that D8p0q � tz � 0, x2 � y2 � 1u and

D8ptq �

$&%D8p0q Y tx � 0, y2 � z2 � 1, z ¥ 0u if t ¡ 0,

D8p0q Y tx � 0, y2 � z2 � 1, z ¤ 0u if t   0.

Therefore, the multivalued function D8 is not Lipschitz continuous around the value t � 0.

Observe that 0 P K8pfq. (To see this, consider the sequence Xk :�

�
1

k
, k,

1

k



which tends

to infinity as k tends to infinity. Then it is easy to check that

fpXkq Ñ 0 and }Xk}}∇fpXkq} Ñ 0

as k Ñ �8.) On the other hand, in Corollary 4.1 below, it will be shown that the multivalued

function D8 is locally Lipschitz outside K8pfq.
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4. Continuity of the set of tangent directions at infinity and its volume

Given a polynomial function f : Rn Ñ R, we would like to study the variation of the

set of tangent directions at infinity of the fibers of f and its volume while relating them to

the set of asymptotic critical values of f . First of all, we need some preparation.

Lemma 4.1. Let f : Rn Ñ R be a polynomial function and let γ : rt1, t2s Ñ Rn be an integral

curve of the vector field
∇f
}∇f}2

. Assume that there exists a constant C ¡ 0 such that

}γptq}}∇fpγptqq} ¥ C for all t P rt1, t2s.

Then ���� γpt1q}γpt1q}
�

γpt2q

}γpt2q}

���� ¤ 2

C
|t1 � t2|.

Proof. For each t P rt1, t2s, let αptq :�
γptq

}γptq}
. We have

}α1ptq} �

����pγq1ptq}γptq} � γptq}γptq}1}γptq}2

����
¤

}pγq1ptq} � }}γptq}1}

}γptq}

¤ 2
}pγq1ptq}

}γptq}
�

2

}∇pγptqq}}γptq}
¤

2

C
.

Therefore ���� γpt1q}γpt1q}
�

γpt2q

}γpt2q}

���� � }αpt1q � αpt2q} ¤ » t2

t1

}α1ptq}dt ¤
2

C
|t1 � t2|.

�

Lemma 4.2. Let f : Rn Ñ R be a polynomial function and let I � pa, bq be an interval in

R. Assume that there exist some constants C ¡ 0 and R ¡ 0 with e
b�a
C  

3

2
such that

}x}}∇fpxq} ¥ C for }x} ¥ R and fpxq P I. (7)

Let t1 P I. Suppose that xk is a sequence in f�1pt1qzBn2R such that xk Ñ 8 and
xk

}xk}
Ñ u.

For each k, let γkptq be the maximal integral curve of the vector field
∇f
}∇f}2

with γkpt1q � xk.

Then for any t2 P pt1, bq, the following statements hold:

(i) The trajectory γkptq reaches the fiber f�1pt2q at the time t2.

(ii) The sequence γkpt2q tends to infinity as k Ñ �8.

(iii) For any cluster point v of the sequence
γkpt2q

}γkpt2q}
, we have

}u� v} ¤
2

C
|t1 � t2|.

14



Proof. (i) For each k, set

Tk � suptt : t1   t ¤ b and }γkpsq} ¥ R for all s P rt1, tsu.

For all t P rt1, Tkq we have fpγkptqq � t and

}γkptq}1 ¤ }pγkq1ptq} �
1

}∇fpγkptqq}
¤
}γkptq}

C
.

By applying Grönwall’s Lemma, it is not hard to see that (see also [7, Theorem 3.5])

}γkptq} ¤ }γkpt1q} exp

�» t

t1

ds

C



� }γkpt1q}e

t�t1
C . (8)

On the other side, we have

γkptq � γkpt1q �

» t

t1

pγkq1psqds �

» t

t1

∇fpγkpsqq
}∇fpγkpsqq}2

ds.

Thus

}γkptq} ¥ }γkpt1q} �

» t

t1

ds

}∇fpγkpsqq}

¥ }γkpt1q} �

» t

t1

}γkpsq}

C
ds

¥ }γkpt1q} �

» t

t1

}γkpt1q}

C
e
s�t1
C ds

� }γkpt1q}

�
1�

» t

t1

de
s�t1
C



� }γkpt1q}

�
1� e

s�t1
C

���t
t1



� }γkpt1q}p2� e

t�t1
C q, (9)

where the third inequality follows from (8). Assume that Tk   b. Then

}γkpTkq} ¥ }γ
kpt1q}p2� e

Tk�t1
C q ¡ }γkpt1q}p2� e

b�a
C q ¡

}γkpt1q}

2
¥ R.

By continuity, it follows that γkpTk � δq ¥ R for all δ ¡ 0 small enough, which contradicts

the definition of Tk. Therefore Tk � b.

As ∇fpγkptqq � 0 for t P rt1, Tkq � rt1, bq � rt1, t2s, the trajectory γkptq can not reach

a stationary point before reaching the fiber f�1pt2q. Moreover, since t1   t2   b, it follows

from (8) that γkptq can not go to infinity as t tends to t2. Therefore, it must reach the fiber

f�1pt2q at the time t2.

(ii) We have γkpt2q P f
�1pt2q by item (i). Moreover, it follows from (9) that

}γkpt2q} ¥ }γ
kpt1q}p2� e

t1�t2
C q ¥ }γkpt1q}p2� e

b�a
C q ¡

}γkpt1q}

2
�
}xk}

2
.

So γkpt2q Ñ 8 as k Ñ �8.
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(iii) We know that for all t P rt1, t2s,

}γkptq} ¥ R and fpγkptqq � t.

Then Lemma 4.1, together with (7), yields���� xk}xk} � γkpt2q

}γkpt2q}

���� ¤ 2

C
|t1 � t2|.

Letting k Ñ 8, we get

}u� v} ¤
2

C
|t1 � t2|

for any cluster point v of the sequence
γkpt2q

}γkpt2q}
. �

The first main result of this paper reads as follows.

Theorem 4.1. Let f : Rn Ñ R be a polynomial function and let t0 R K8pfq. Then there

exist some constants c ¡ 0 and δ ¡ 0 such that for all t1, t2 P pt0 � δ, t0 � δq, we have

distgHpD8pt1q, D8pt2qq ¤ c|t1 � t2|,

where distgHp�, �q denotes the Hausdorff distance with respect to the intrinsic metric in Da
8.

Proof. Since t0 R K8pfq, there exist some constants C ¡ 0, R ¡ 0 and δ ¡ 0 such that

}x}}∇fpxq} ¥ C

for all x P Rn with }x} ¥ R and |fpxq � t0|   δ. By shrinking δ if necessary, we can assume

that e
2δ
C  

3

2
and δ  

R1

2c
, where c :�

2

C
and

R1 :� mintdistpZ,Z 1q : Z � Z 1, Z and Z 1 are connected components of Da
8u.

(If Da
8 is connected, we let R1 :� �8.)

Denote by distgp�, �q the intrinsic metric in Da
8. Let t1, t2 P pt0 � δ, t0 � δq with t1   t2.

To prove the theorem, it is enough to show that

distgpu,D8pt2qq ¤ c|t1 � t2| for all u P D8pt1q.

To this end, fix any u P D8pt1q. By definition, there is a sequence xk P f�1pt1q such that

xk Ñ 8 and
xk

}xk}
Ñ u. For each k, let γkp�q be the maximal integral curve of the vector

field
∇f
}∇f}2

with γkpt1q � xk. Passing to a subsequence if necessary, we can suppose that

the sequence
γkpt2q

}γkpt2q}
converges to a vector v. By Lemma 4.2, we have v P D8pt2q and

}u� v} ¤ c|t1 � t2| ¤ 2cδ   R1. (10)
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Consequently, u and v lie in a same connected component of Da
8.

Take arbitrarily M ¡ 1. By Proposition 2.1, there exists a finite semi-algebraic stratifi-

cation S of Da
8 such that

distgpx, yq ¤M}x� y}, (11)

for any stratum Y P S and any two points x, y P Y .

Assume that there exists a finite sequence of points in Da
8:

xps0q :� u, xps1q, . . . , xpspq :� v, (12)

with t1 �: s0 ¤ s1   � � �   sp :� t2, such that for i � 0, . . . , p�1, the following two properties

hold:

 xpsiq and xpsi�1q lie in the closure of a same stratum of S, and

 }xpsiq � xpsi�1q} ¤ c|si � si�1|.

Then, by the inequality (11), we get

distgpxpsiq, xpsi�1qq ¤ M}xpsiq � xpsi�1q} ¤ cM |si � si�1|,

which yields

distgpu, vq ¤
p�1̧

i�0

distgpxpsiq, xpsi�1qq ¤
p�1̧

i�0

cM |si � si�1| � cM |t1 � t2|. (13)

Therefore

distgpu,D8pt1qq ¤ distgpu, vq ¤ cM |t1 � t2|.

As the inequalities hold for any M ¡ 1, they still holds for M � 1. Hence it remains to

construct a sequence with the required properties.

Since u P Da
8, there exists a stratum Y1 P S such that u P Y 1. If v P Y 1, there is nothing

prove, so assume that v R Y 1.

Let s0 :� t1, xps0q :� u, and

s1 :� sup

"
s P rs0, t2s : the sequence

γkpsq

}γkpsq}
has a cluster point in Y 1

*
.

The following claim is a key of the proof since it allows to determine the second point of the

desired sequence.

Claim 1. There exists a cluster point of the sequence
γkps1q

}γkps1q}
in Y 1.

Proof. Observe that the statement is clear if s1 � s0 so assume that s1 ¡ s0. Assume for

contradiction that the contrary holds. Accordingly, there is a ¡ 0 such that for all k large

17



enough, dist

�
γkps1q

}γkps1q}
, Y 1



¥ a. Take any N ¥ 2 and let s11 :� s1�

a

cN
  s1. Increasing N

if necessary so that s11 ¥ s0. In light of Lemma 4.2, we obtain���� γkps1q

}γkps1q}
�

γkps11q

}γkps11q}

���� ¤ c|s1 � s
1
1| �

a

N
.

Consequently, for all k large enough, we have

dist

�
γkps11q

}γkps11q}
, Y 1



¥ dist

�
γkps1q

}γkps1q}
, Y 1



�

���� γkps1q

}γkps1q}
�

γkps11q

}γkps11q}

���� ¥ a�
a

N
¡ 0.

It follows that
γkps11q

}γkps11q}
does not have cluster points in Y 1. Since this fact holds for all N

large enough, we get a contradiction to the definition of s1. Therefore, the sequence
γkps1q

}γkps1q}
must have a cluster point xps1q in Y 1. �

In light of Claim 1, we can find a cluster point xps1q of the sequence
γkps1q

}γkps1q}
in Y 1.

Passing to a subsequence if necessary, we can assume that
γkps1q

}γkps1q}
converges to xps1q as

k Ñ �8. In order to define the next point of our sequence, we need to show that xps1q is

not a “death end” in the boundary of Y1, i.e., Y1 is not the unique stratum in S such that

xps1q P Y 1.

Claim 2. There is a stratum Y2 P S with Y2 � Y1 such that xps1q P Y 2.

Proof. Since v R Y 1, we must have s1   t2. For each N, let τN :� s1 �
1

N
with N large

enough so that τN ¤ t2 and let wN be a cluster point of the sequence
γkpτNq

}γkpτNq}
. It follows

from Lemma 4.2 that wN P D8pτNq and that

}wN � xps1q} ¤ c|τN � s1| �
c

N
Ñ 0 as N Ñ �8.

Hence the sequence wN converges to xps1q as N Ñ �8. Since wN P D8pτNq � Da
8, there is

a stratum Y2 P S such that Y2 contains infinite number of points of the sequence wN . Clearly,

xps1q P Y 2. Note that, by definition of s1, for all N sufficiently large, the sequence
γkpτNq

}γkpτNq}
does not have cluster points in Y 1, so wN R Y 1. Consequently Y2 � Y1 and the lemma is

proved. �

If v P Y 2, then it is clear that the sequence u � xps0q, xps1q, v has the desired properties.

So assume that v R Y 2. Let

s2 :� supts P rs1, t2s : the sequence
γkpsq

}γkpsq}
has a cluster point in Y 2u,
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and repeat the arguments in Claims 1 and 2 to get a point xps2q P Y 2 and a stratum Y3 P S
with Y3 � Y2 such that xps2q P Y 3. Note that s1   s2 because of the existence of wN in Y2

for some N large enough. (Recall that wN is a cluster point of the sequence
γkpτNq

}γkpτNq}
with

τN � s1 �
1

N
.) Furthermore, by definition of s1, the sequence

γkpsq

}γkpsq}
does not have cluster

points in Y 1 for all s ¡ s1. So by induction, for each i, we can construct a sequence of points

u � xps0q, xps1q, . . . , xpsiq in Da
8 and a sequence of strata Y1, . . . , Yi�1 in S satisfying the

following conditions:

 xpsiq � limkÑ8
γkpsiq

}γkpsiq}
P Y i,

 xpsiq and xpsi�1q lie in Y i�1 (assuming that v R Y iq, and


γkpsq

}γkpsq}
does not have cluster points in

�i
j�1 Y j for all s ¡ si.

The first condition and Lemma 4.2 together imply that

}xpsiq � xpsi�1q} ¤ c|si � si�1|.

The third condition shows that the strata Yj are distinct. Since there is only a finite number

of strata in S, there must exist p ¡ 0 such that xpsp�1q and v lie in Y p, whence the sequence

u, xps1q, . . . , xpsp�1q, v

has the desired properties. This ends the proof of the theorem. �

Remark 4.1. From the proof of Theorem 4.1 we also have that xpsiq P Y izYi for i �

1, . . . , p� 1. Since we do not use this fact, we leave the proof to the reader.

As a consequence of Theorem 4.1, we can see that the set of tangent directions at infinity

of the fiber of a polynomial function varies (locally Lipschitz) continuously except at a finite

number of values.

Corollary 4.1. Let f : Rn Ñ R be a polynomial function. Then the multivalued function

D8 : RÑ Sn�1, t ÞÑ D8ptq,

is locally Lipschitz outside K8pfq, i.e., for each t0 R K8pfq, there exist some constants c ¡ 0

and δ ¡ 0 such that for all t1, t2 P pt0 � δ, t0 � δq, we have

D8pt1q � D8pt2q � c|t1 � t2|Bn. (14)

In addition, the mapping t ÞÑ dimD8ptq is lower semicontinuous at t0.
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Proof. The first assertion follows directly from Theorem 4.1. It remains to show that

dimD8ptq ¥ dimD8pt0q

for t close enough to t0. If D8pt0q � H then there is nothing to prove; so assume that

D8pt0q � H. Clearly it suffices to consider only the case where t ¡ t0. Let

Apt0,t0�δq :� tpu, tq P Sn�1 � pt0, t0 � δq : u P D8ptqu,

which is a semi-algebraic set. Let π : Apt0,t0�δq Ñ pt0, t0 � δq be the projection on the last

coordinate. Obviously

π�1ptq � Apt0,t0�δq X pSn�1 � ttuq � D8ptq � ttu.

In light of Theorem 2.3, there exists a positive constant δ1 ¤ δ such that π is a semi-algebraic

fibration on Apt0,t0�δ1q. Consequently, the function t ÞÑ dimD8ptq is constant on pt0, t0 � δ
1q.

For t P pt0, t0 � δ1q, observe that dimD8ptq � �1 since otherwise, f�1ptq is compact while

f�1pt0q is not which implies that t0 is a bifurcation value of f , so t0 P K8pfq which is a

contradiction. Therefore D8ptq � H, which yields

dimApt0,t0�δ1q � dimD8ptq � 1.

Now by (14), it is not hard to see that D8pt0q � tt0u � BApt0,t0�δ1q. Thus, by [5, Proposi-

tion 3.16],

dimD8pt0q ¤ dimApt0,t0�δ1q � 1 � dimD8ptq.

This finishes the proof of the corollary. �

As a consequence of Theorem 4.1, we deduce below that the volume function

RÑ R, t ÞÑ voln�2pD8ptqq

is locally Lipschitz outside the set K8pfq. The main idea of the proof is that the entropy

of any semi-algebraic set having “small width” can be estimated by the entropy of a semi-

algebraic set of lower dimension. Since the dimension of D8ptq is at most n�2 by Lemma 3.1,

it is natural to consider the volume in this dimension.

Theorem 4.2. Let f : Rn Ñ R be a polynomial function. Then the volume function

RÑ R, t ÞÑ voln�2pD8ptqq,

is locally Lipschitz outside the set K8pfq.
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Proof. Fix t0 R K8pfq and let c ¡ 0 and δ ¡ 0 be the constants determined in Theorem 4.1.

Since Theorem 4.1 still holds if we shrink δ and increase c, we can suppose that δ ¤ 1
2

and

c ¥ 1. For t1, t2 P pt0 � δ, t0 � δq, one has

|voln�2pD8pt2qq � voln�2pD8pt1qq|

� |voln�2pD8pt2qzD8pt1qq � voln�2pD8pt2q XD8pt1qq �

pvoln�2pD8pt1qzD8pt2qq � voln�2pD8pt1q XD8pt2qqq|

� |voln�2pD8pt2qzD8pt1qq � voln�2ppD8pt1qzD8pt2qq|

¤ voln�2ppD8pt1qzD8pt2qq � voln�2pD8pt2qzD8pt1qq.

Now the proof is completed by demonstrating the following inequalities:

voln�2ppD8pt2qzD8pt1qq ¤ a|t1 � t2|, (15)

voln�2ppD8pt1qzD8pt2qq ¤ a|t1 � t2|, (16)

where a is a positive constant not depending on t.

We will prove only (15) since proving (16) is completely similar. Observe that (15) is

trivial if dimppD8pt2qzD8pt1qq   n� 2, so suppose that dimppD8pt2qzD8pt1qq � n� 2. For

each t P R, let Xt � D8ptq be the semi-algebraic set defined in Lemma 3.1. Then D8ptqzXt is

a semi-algebraic set. By Lemma 3.1, there are representations of D8ptq and Xt such that the

diagrams DpD8ptqq and DpXtq depend only on n and the degree of f . Hence DpD8ptqzXtq

also depends only on n and the degree of f . Consequently, we can fix a diagram

D :� DpD8ptqqzXt

depending only on n and the degree of f .

We claim that

distgpu,D8pt1qzXt1q � distgpu,D8pt1qq (17)

for any u P D8pt2qzD8pt1q. To this end, take arbitrarily a continuous curve γ : r0, 1s Ñ Da
8

such that γp0q � u and γp1q P D8pt1q. There exists T P p0, 1s such that γpT q P D8pt1q and

γptq R D8pt1q for t P r0, T q. Then clearly γpT q P D8pt1qzXt1 . Hence

distgpu,D8pt1qzXt1q ¤ distgpu,D8pt1qq.

Observe that the inequality

distgpu,D8pt1qzXt1q ¥ distgpu,D8pt1qq

is obvious so the inequality (17) holds.
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By Theorem 4.1 and (17), we have

distpu,D8pt1qzXt1q ¤ distgpu,D8pt1qzXt1q � distgpu,D8pt1qq ¤ c|t1 � t2|,

i.e., u P Nc|t1�t2|pD8pt1qzXt1q. Consequently

D8pt2qzD8pt1q � Nc|t1�t2|pD8pt1qzXt1q.

Set l :� dimpD8pt1qzXt1q. Clearly l   n� 2. Applying Proposition 2.2, we get the following

upper bound for the c|t1 � t2|-entropy of D8pt2qzD8pt1q:

Mpc|t1 � t2|, D8pt2qzD8pt1qq ¤

�
4

c|t1 � t2|


l

Cpnqνplqαpn,DpD8pt1qzXt1qq

�

�
4

c|t1 � t2|


l

Cpnqνplqαpn,Dq,

(18)

where Cpnq and νplq are the positive constants defined in Proposition 2.2, which depend

only on n and l respectively; αpn,Dq is a positive constant depending only on n and D .

On the other side, by Proposition 2.3, there is a positive constant C1 depending only

on the diagram of D8pt2qzD8pt1q such that

C1

n�2̧

i�1

VipD8pt2qzD8pt1qq

�
1

c|t1 � t2|


i

¤Mpc|t1 � t2|, D8pt2qzD8pt1qq, (19)

where VipD8pt2qzD8pt1qq is the i-th variation of D8pt2qzD8pt1q. Note that the diagram

of D8ptq does not depend on t in light of Lemma 3.1, so neither does C1. Now, combin-

ing (18) and (19), we have

voln�2pD8pt2qzD8pt1qq

�
1

c|t1 � t2|


n�2

¤
n�2̧

i�1

VipD8pt2qzD8pt1qq

�
1

c|t1 � t2|


i

¤
1

C1

Mpc|t1 � t2|, D8pt2qzD8pt1qq

¤
1

C1

�
4

c|t1 � t2|


l

Cpnqνplqαpn,Dq.

Therefore

voln�2pD8pt2qzD8pt1qq ¤
4l

C1

pc|t1 � t2|q
n�2�lCpnqνplqαpn,Dq

�
4l

C1

cn�2�lp|t1 � t2|q
n�3�lCpnqνplqαpn,Dq|t1 � t2|

¤
4n�2�1

C1

cn�2Cpnqνpn� 3qαpn,Dq|t1 � t2|,

where the last inequality follows from the following facts:

|t1 � t2|   2δ ¤ 1, c ¥ 1, n� 3 ¥ l and νpn� 3q ¥ νplq.
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This completes the proof of (15) and hence that of the theorem. �

Questions.

(1) Is the function t ÞÑ dimD8ptq constant on each connected component of RzK8pfq?

(2) Does D8ptq have the same topology for all t in a connected component of K8pfq?

(3) How about the cases of polynomial mappings, semi-algebraic or definable functions and

mappings?
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